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A B S T R A C T

Gastric cancer (GC) is one of the most common tumors worldwide. Standard treatment after early
detection involves surgical excision (recurrence is possible), and metastatic gastric cancer is refractory to
immuno-, radio-, and most harmful chemotherapies. Various natural compounds have shown efficacy in
killing different cancers, albeit not always specifically. In this study, we show that dandelion root extract
(DRE) specifically and effectively suppresses proliferation and migration in human gastric cells without
inducing toxicity in noncancerous cells. Long noncoding RNAs (lncRNAs) are known to promote
tumorigenesis in many cancer types. Here, we showed that the lncRNA colon cancer-associated
transcript-1 (CCAT1) was down-regulated in dandelion-treated GC cells. Furthermore, downregulation of
CCAT1 inhibited proliferation and migration of gastric cells. We also found that DRE exerted its function
in GC cells partially through targeting CCAT1. This data will provide a basis on which further research in
cancer treatment through DRE can be executed.
© 2017 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Gastric cancer is the fourth most common malignancy and the
second leading cause of cancer-related deaths worldwide, with
approximately 1 million new cases and 0.7 million deaths per year
[1]. Despite recent improvements in multimodal therapy including
surgery, chemotherapy, radiotherapy, and targeted therapy, the
prognosis of patients diagnosed with advanced GC remains
unsatisfactory [2]. Therefore, it is urgent to elucidate the regulatory
network underlying GC and improve the quality of life of patients
already diagnosed with the disease.

Natural health products (NHPs) and natural products (NPs)
have been identified as essential components in the development
of many drugs. Besides, most of the currently available chemo-
therapies including paclitaxel are derived from natural sources [3].
Abbreviations: GC, gastric cancer; NHPs, natural health products; NPs, natural
products; DRE, dandelion root extract; CCAT1, colon-cancer-associated transcript-
1; GES-1, gastric epithelium cell line.
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nd/4.0/).
Recent studies on the use of the NHPs for specific diseases yield
some related scientific validation for their application [4].
Dandelions (Taraxacum spp), as one of the most common and
recognizable weeds, can be found in almost every part of the world
[5]. This plant has been used widely in Traditional Chinese
Medicine and traditional Native American Medicine for its
medicinal activity. Dandelions extracts could treat diseases
ranging from diarrhea and digestive diseases to hepatitis. However,
there are limited scientific studies investigating the anti-cancer
activity of dandelion extracts and very little is known about the
mechanism of action. Ovadje and his colleagues reported a strong
anti-cancer activity of DRE in human leukemia, pancreatic cancer
cells, colorectal cancer cells and drug-resistant human melanoma
cells [6–10]. Nevertheless the efficacy of DRE in GC has not been
reported.

Long non-coding RNAs (lncRNAs), consisting of more than 200
nucleotides with no or limited coding protein capacity, have been
reported in many biological processes [11–15]. Colon-cancer-
associated transcript-1 (CCAT1), a 2628-bp lncRNA located on
chromosome 8q24.21, was first identified in colon cancer [16].
CCAT1 is upregulated in hepatocellular carcinoma, gallbladder
cancer, and colon carcinoma tissues compared with adjacent
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normal tissues [17]. However, the expression of CCAT1 in gastric
cancer still remains unclear.

In the current study, we have investigated the anti-cancer
activity of the DRE in gastric cancer cell lines. Our results showed
that DRE could suppress the proliferation and decrease the
metastatic capacity of GC cells by targeting CCAT1. We have also
observed that CCAT1 was down-regulated in dandelion-treated GC
cells. Furthermore, downregulation of CCAT1 also inhibited
proliferation and migration of gastric cancer cells. Furthermore,
DRE exerted its function in GC cells partially by targeting CCAT1.
Though it is unclear which components of DRE are active in
successfully killing human gastric cancer cells, our work with DRE
presents a novel, natural chemotherapeutic agent that may be
extended to cancer lines.

2. Material and method

2.1. Cell culture

Two gastric cancer cell lines (SGC7901, BGC823), and a normal
gastric epithelium cell line (GES-1) were purchased from the
Institute of Biochemistry and Cell Biology of the Chinese Academy
of Sciences (Shanghai, China). Cells were cultured in RPMI 1640 or
DMEM (GIBCO-BRL) medium supplemented with 10% fetal bovine
serum (10% FBS), 100 U/mL penicillin, and 100 mg/mL streptomy-
cin in humidified air at 37 �C with 5% CO2.

2.2. Dandelion root extraction & preparation

The dandelion roots used for this study were obtained from
Premier Herbal Inc. (Lot No. 318121). The root extract was prepared
according to the previously reported [18]. In detail, dried dandelion
root was immersed in liquid nitrogen for about 5 to 10 min, until
thoroughly frozen. The frozen pieces were ground up in an
impingement grinder to an average particle size of �45 mm.
Following grinding, dandelion root powder was extracted in
boiling water on low heat for 3 h. The total extracted material was
filtered through a NITEX nylon mesh filter (LAB PAK; Sefar BDH Inc.
Chicoutini, Quebec CA) and the filtrate was spun down at 800 � g
for 5 min at room temperature. The supernatant was filtered
through a 0.45 mm filter, followed by lyophilization. The dried
Fig.1. DRE suppressed the proliferation of GC cells. A. MTT was employed to determine th
B. Colony formation was performed to measure the proliferation ability of SGC7901, BGC8
of at least three independent experiments. N.S.: no significant *p < 0.05, **p < 0.01 vs. 
extracted material was reconstituted in water to give a final stock
solution of 100 mg/ml and then passed through a 0.22 mm filter, in
a biological safety cabinet and stored at 4 �C or �20 �C for long term
storage. This material was used for all the experiments described in
this study.

2.3. Real-time quantitative reverse-transcription polymerase chain
reaction (qRT-PCR)

Total RNA from cells was isolated with Trizol reagent
(Invitrogen, CA, USA) according to the manufacturer’s protocol.
Reverse transcription was performed with PrimeScript RT reagent
Kit (Takara, Japan) according to the manufacturer’s instructions.
qRT-PCR was performed with SYBR Prime Script RT-PCR Kits
(Takara, Japan) based on the manufacturer’s instructions. Results
were calculated with the 2�DDCt methods and normalized to the
expression of GAPDH. All assays were performed in triplicate. The
expression levels were relative to the fold change of the
corresponding controls which were defined as 1.0.

2.4. Cell viability

Cells were seeded into 96-well plates (3 � 103 cells/well)
directly or 24 h after transfection. After treatment with the
indicated DRE for 48 h, cell viability was assessed via 3-(4,5-
dimethylthiazol-2-yl)-2, 5-diphenyl-trtrazolium bromide (MTT)
assayAll samples were assayed in triplicate.

2.5. Colony formation assay

Cells (500 cells/well) were plated in 6-well plates and incubated
in RPMI 1640 with 10% FBS at 37 �C. Two weeks later, the cells were
fixed and stained with 0.1% crystal violet. The number of visible
colonies was counted manually.

2.6. Cell transfection

The plasmids pcDNA3.1/CCAT1 (pcDNA3.1/empty vector as NC)
and shCCAT1 (shRNA as control) were all synthesized by
GenePharma (Shanghai, China). Transfections were performed
e effect of DRE on the viability of SGC7901, BGC823 and GES-1 cells treated with DRE.
23 and GES-1 cells treated with or without DRE. Error bars represent the mean � SD
control group.



Fig. 2. Dandelion decreased the metastasis capacity of GC cells. A–C. Wound healing assay, transwell assay and attachment/detachment assay were performed to detect the
effect of DRE on the migration of SGC7901, BGC823 and GES-1 cells. Error bars represent the mean � SD of at least three independent experiments. N.S.: no significant
*p < 0.05, **p < 0.01 vs. control group.
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using Lipofectamine 2000 (Invitrogen, USA), according to the
manufacturer’s protocol.

2.7. Wound healing assay

Cell migration capacity was calculated by wound healing assay.
2 � 105 cells with or without transfection were plated into 12-well
plates and incubated in DMEM with 10% FBS at 37 �C. After
reaching 100% confluence, cells were wounded by scraping with a
200 ml tip, following washed 3 times in serum-free medium and
incubated in regular medium. Wounds were observed at 0 and
48 h. The cell migration distance was calculated by subtracting the
wound width at each time point from the wound width at the 0 h
time point. Three independent assays were assayed.

2.8. Migration and invasion assays

Cell migration and invasion were measured by transwell
chamber (8um pore size, Corning) and Matrigel invasion (Bection
Dickinson), respectively. 48 h after transfection, cells in serum-free
media were placed into the upper chamber coated with or without
10ug/ml Matrigel. Media containing 10% FBS were added into the
lower chamber. Following 48 h incubation, cells remained in upper
membrane were wiped, while cells migrated or invaded were fixed
in methanol, stained with 0.1% crystal violet and counted under a
microscope. Three independent experiments were carried out.

2.9. Attachment and detachment assays

For attachment assay, cells were seeded in 24-well plates at
5 �104 cells per well. Unattached cells were removed after 1 h
incubation, and the attached cells were counted after trypsiniza-
tion. The data were presented as a percentage of the attached cells
compared to total cells. For cell detachment assay, after 24 h
Fig. 3. CCAT1 was down-regulated in DRE-treated GC cells.
A. Expression profiles of 13 gastric cancer-associated lncRNAs in BGC-823, SGC-7901 and 

7901 cell treated with or without DRE. Error bars represent the mean � SD of at least three
incubation, the cells were incubated with 0.05% trypsin for 3 min to
detach the cells. Then, the culture medium was added to inactivate
the trypsin and the detached cells were collected. The remaining
cells were incubated with 0.25% trypsin to detach and counted. The
data were presented as a percentage of the detached cells to total
cells.

2.10. Statistical analysis

All experiments were performed at least three times, and
presented as mean � SD. The SPSS 17.0 software (SPSS Inc., Chicago,
IL, USA) was used for statistical analysis. Two group comparisons
were performed with a Student t-test. Multiple group comparisons
were analyzed with one-way ANOVA. All tests performed were
two-sided. P < 0.05 or less was considered significant.

3. Results

3.1. The effect of DRE on the proliferation ability of GC cells

To detect the effect of dandelion on GC cells proliferation, two
GC cells (SGC7901 and BGC823) were employed. For comparison,
normal gastric epithelium cells (GES-1) were also used to assess
the selectivity of DRE to GC cells. As present in Fig. 1A, results from
MTT showed that the viability of SGC7901 and BGC823 cells
exposed to the treatment of DRE was significantly suppressed, and
this effect was dose dependent. The selectivity of DRE to cancer
cells was confirmed, as normal GES-1 cells did not lose cell viability
when exposed to the same doses. Meanwhile, the results from
colony formation assays showed that proliferation ability was
obviously suppressed when SGC7901 and BGC823 cells treated
with DRE (3 mg/ml), while GES-1 cells, again, remained unaffected
(Fig. 1B). These results confirmed the anti-cancer potential of DRE
in GC cells.
normal gastric mucosal cell GES-1. B–C. The level of 13 lncRNAs in BGC-823 and SGC-
 independent experiments. N.S.: no significant *p < 0.05, **p < 0.01 vs. control group.
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3.2. The effect of DRE on the metastasis capacity of GC cells

To determine if DRE can prevent invasive and metastatic
behaviors in GC cells, the scratch wound healing assay, transwell
assay and attachment/detachment assay were employed. As
present in Fig. 2A–C, results from wound healing assay, transwell
assay and attachment/detachment assay showed that treatment
with DRE inhibited the ability of GC cells, SGC7901 and BGC823, to
migration, while GES-1 cells, again, remained unaffected. Collec-
tively, these findings indicate that DRE can inhibit the ability of GC
cells to migrate and invade, and therefore metastasize to secondary
locations.
Fig. 4. Down-regulated CCAT1 suppressed the proliferation and migration of GC cells. A. 

and colony formation were employed to measure the function of CCAT1 on GC cells pro
assays were employed to measure the function of CCAT1 on GC cells migration. Error 

significant *p < 0.05, **p < 0.01 vs. control group.
3.3. CCAT1 was down-regulated in DRE-treated GC cells

LncRNAs are known to promote tumorigenesis in many cancer
types. To explore whether lncRNAs mechanism were involved in
the DRE-mediated anti-tumorigenesis of GC, RT2 lncRNA PCR
Arrays system (https://www.qiagen.com/cn/shop/pcr/primer-
sets/rt2-lncrna-pcr-arrays/?catno=LAHS-002Z#geneglobe) was
applied. We analyzed the expression profiles of 13 gastric
cancer-associated lncRNAs in BGC-823, SGC-7901 and normal
gastric mucosal cell GES-1 (Fig. 3A). We found that only CCAT1 was
significantly increased in both BGC-823 and SGC-7901 cells. To
further confirmed, we measured the expression level of 13 lncRNAs
Satisfactory transfection efficiency was obtained at 48 h post-transfection. B–C. MTT
liferation. D–F. Wound healing assay, transwell assay and attachment/detachment
bars represent the mean � SD of at least three independent experiments. N.S.: no

https://www.qiagen.com/cn/shop/pcr/primer-sets/rt2-lncrna-pcr-arrays/?catno=LAHS-002Z#geneglobe
https://www.qiagen.com/cn/shop/pcr/primer-sets/rt2-lncrna-pcr-arrays/?catno=LAHS-002Z#geneglobe
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in BGC-823 and SGC-7901 cell with or without treatment of DRE.
As shown in Fig. 3B–C, the level of CCAT1 could be significantly
suppressed by DRE. Combined the three results (Fig. 3A–C), we
focused on CCAT1, the greatest reduction one in response to DRE.
Therefore, we selected CCAT1 as the possible target of DRE for the
following experiments.

3.4. Down-regulated CCAT1 suppressed the proliferation and
migration of GC cells

To confirm whether the effect of DRE on GC cells might be
mediated by CCAT1, we firstly investigated the function of CCAT1 in
GC cells. We transfected sh-CCAT1 into SGC7901 and BGC823 cells,
and satisfactory transfection efficiency was obtained at 48 h post-
transfection (Fig. 4A). Then, MTT and colony formation assay
showed that silencing CCAT1 decreased the cells proliferation
ability (Fig. 4B–C). Additionally, results from wound healing assay,
Fig. 5. DRE exerted its function in GC cells was at least partially through targeting CCAT1. A
with CCAT1. C–E. The function of DRE on GC cells migration could be reversed when
independent experiments. N.S.: no significant *p < 0.05, **p < 0.01 vs. control group.
transwell assay and attachment/detachment assays showed that
cells down-regulated CCAT1 exerted an weakened migration
capacity in cells transfected with sh-CCAT1 (Fig. 4D–F). These
data revealed that the effect caused by down-regulated CCAT1 was
consistent with the function of DRE, suggesting that dandelion
might exert its function by targeting CCAT1.

3.5. DRE exerted its function in GC cells was at least partially through
targeting CCAT1

To further confirm that DRE exerted its function through
targeting CCAT1, rescue assays were performed. As present in
Fig. 5A–B, the function of DRE on GC cells proliferation could be
reversed when co-transfected with CCAT1. Additionally, results
from wound healing assay, transwell assay and attachment/
detachment assay showed that DRE on GC cells migration could
be reversed when co-transfected with CCAT1 (Fig. 5C–E). These
–B. Function of DRE on GC cells proliferation could be reversed when co-transfected
 co-transfected with CCAT1. Error bars represent the mean � SD of at least three
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findings reflected that DRE could selectively inhibit cancer cell
growth and such function was at least partially mediated through
targeting CCAT1.

4. Discussion

DRE have been studied extensively in recent years for its anti-
depressant and anti-inflammatory activity [19–24]. Besides, DRE
has been used in traditional medicine as a detoxifying agent for
digestive disorders [25]. However, there has been little scientific
advancement made in this field about the effect of DRE on cancers
including GC. In this study, we show that DRE can specifically
target human gastric cancer cell without inducing toxicity in
noncancerous cells, making it a valuable chemotherapeutic. We
have investigated the inhibition of proliferation and migration in
cancer cells and anti-cancer potential of DRE in GC cells.

Long non-coding RNAs (LncRNAs), consisting of more than 200
nucleotides with no or limited coding protein capacity, have been
reported in many biological processes [26–33]. To explore the
underlying lncRNAs mechanism in the dandelion-mediated anti-
tumorigenesis of GC, RT2 lncRNA PCR Arrays system was applied.
Finally, we chose the greatest reduction one, CCAT1, in response to
dandelion as the study object. CCAT1, located in the vicinity of c-
MYC, was first found abnormally expressed in colon cancer, and has
been elucidated to be dysregulated in many other cancers [34–41].
However, the mechanism by which CCAT1 exhibits its oncogenic
functions in the dandelion-mediated anti-tumorigenesis of GC
remains to be investigated.

Firstly, we employed loss-of-function to investigate the effect of
CCAT1 in GC cells. We found that deletion of CCAT1 significantly
decreased the cells proliferation and migration. What’s more,
rescue assays revealed that the function of dandelion root extracts
could be partially reversed by introduction with CCAT1. All these
together suggested that dandelion root extracts exerted in GC cells
was through targeting CCAT1.

5. Conclusion

In general, we confirmed the function of DRE and first revealed
that DRE could suppress gastric cancer cells proliferation and
migration by targeting lncRNA-CCAT1. Our results scientifically
validate the use of DRE as potential anti-cancer agents, which
might represent a novel non-toxic alternative to conventional
cancer therapy available today.
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